ANTH 175: EVOLUTIONARY MEDICINE
Fall Quarter 2016 (CRN: 10244)
Lillis 282 Mondays & Wednesdays 2:00-3:20 pm

4 Credit Hours; Satisfies an SC Group Requirement

Instructor: Dr. Josh Snodgrass (website: http://anthropology.uoregon.edu/profile/jjosh/)
Office Hours: Tues. 3-4 & Wed. 1-2 pm, & by appointment
Office Location: 372 Oregon Hall (but Wed. office hours @ Lillis Coffee Shop)
E-mail: jjosh@uoregon.edu
Phone: 541-346-4823

Graduate Teaching Fellows (GTFs):
Elisabeth Goldman (egoldman@uoregon.edu; http://anthropology.uoregon.edu/profile/egoldman/)
Office Hours: Tues. 10:45-12:45; Office: Condon 366
Noah Simons (nsimons@uoregon.edu; https://noahdsimons.com/)
Office Hours: Tues. 11-1; Office: Condon 366

Course Description: Application of evolutionary thinking to the study of human health and disease

Format: Lecture and required weekly laboratory sections.

Course Content: This course provides an introduction to evolutionary (or Darwinian) medicine, a relatively new field that recognizes that evolutionary processes and human evolutionary history shape health among contemporary human populations. The field of evolutionary medicine emphasizes ultimate explanations, such as how natural selection and other evolutionary forces shape our susceptibility to disease; this perspective complements that of biomedicine, which generally focuses on identifying the immediate mechanisms that give rise to diseases and malfunctions. The evolutionary medicine approach has provided insights into why diseases occur at all and additionally has produced valuable insights on treatment strategies. This course will examine a variety of diseases using an evolutionary perspective, including infectious diseases, mental disorders and cancers, and focus attention on the role of diet and psychosocial stress in the development and progression of cardiovascular disease, obesity, and diabetes.

Expanded Course Description: This is a science group satisfying course that is designed to be a comprehensive introduction to evolutionary, or Darwinian, medicine. In brief, evolutionary medicine is the application of evolutionary thinking, including evolutionary processes and human evolutionary history, to understanding health and disease among contemporary human populations. This course uses a scientific approach, drawing on the methods, theories, and bodies of knowledge from various scientific disciplines, including evolutionary biology, genetics, neuroscience, physiology, nutritional sciences, and medicine.

This course has four main sections:

Section 1 introduces students to the scientific method and evolutionary theory, and builds the foundation for the understanding the evolutionary medicine approach. Particular attention is directed towards the adaptation concept and life history theory. This section of the course also provides an introduction to human evolutionary history, concentrating on key events in hominin evolution (e.g., bipedalism and brain evolution), and to modern human biological variation.

Section 2 focuses on the basic principles of evolutionary medicine, and emphasizes differences between proximate and ultimate explanations. This section of the course also provides a basic introduction to epidemiology (the study of patterns of human disease and their causes) and a brief discussion of contemporary global health issues.
Section 3 uses the evolutionary medicine approach to examine infectious diseases. This section of the course provides an introduction to human defenses to infectious organisms, and describes major cultural transitions in human history that altered exposure to infectious disease. This section also focuses on emerging infectious diseases.

Section 4 applies the evolutionary medicine approach to chronic diseases, including cancers and osteoporosis. This section of the course emphasizes cardiovascular diseases (heart disease and stroke), obesity, and diabetes and uses a biocultural framework to examine the role of diet and psychosocial stress in the development and progression of these conditions.

GENERAL EDUCATION: SCIENCE
This is a group-satisfying general education science (SC) course that introduces students to the foundations of several scientific disciplines (in particular, biological anthropology, biomedicine, and epidemiology/public health), and provides an introduction to the fundamental process of scientific reasoning.

General education is the cornerstone of a liberal arts and sciences education. General education allows students to explore in disciplines that they may never have had the opportunity to explore and to make connections among ostensibly disparate ideas and intellectual traditions. A liberal arts and sciences education prepares students to understand major societal challenges, to think critically and flexibly about solutions, to consider complex ethical issues, and to provide leadership on a variety of global issues.

In this time of movement away from a liberal arts and science education in favor of technical training for what are deemed to be economically valuable professions, the UO undergraduate education embraces an educational foundation that incorporates and integrates the natural sciences, the social sciences, and the humanities. This type of education is more important now than ever. This deep and flexible knowledge serves as a Swiss Army Knife—at a variety of mental tools—that helps students navigate their future, and prepares them for an ever-shifting job market that will likely include multiple career paths.

LEARNING OBJECTIVES
After successful completion of this course, students will have an understanding of the following key issues:
→ The scientific method as a way of knowing and how it serves as a way to ensure accountability for factual claims
→ The basic principles of evolutionary biology and human genetics
→ The major trends in hominin evolution and how humans have adapted biologically to their environments
→ The basic concepts and terminology used in the field of epidemiology/public health
→ The distinction between proximate and ultimate explanations for human biology and disease
→ The general pattern of health change throughout human prehistory and history, and across populations
→ How the biocultural approach to health can provide a window onto such issues as obesity, cardiovascular disease, birth complications, HIV/AIDS, autoimmune diseases, and allergy
→ The explanatory framework that the environmental mismatch approach uses to explain chronic disease, infectious conditions, and mental disorders in contemporary human populations
→ How evolutionary approaches to health and disease can inform public health policy decisions

Accommodations: Appropriate accommodations will be provided for students with documented disabilities. If you anticipate needing accommodations in this course, please make arrangements to meet with me soon.

Required Readings: Assorted articles and book chapters (see below)

Canvas: The Canvas site for this class will be your main source for course information, documents, and announcements. Make sure that you check your Canvas-linked e-mail account every day.

Expectations and Grading: Attendance at lectures and participation in lab sections is expected. Course readings are essential to passing exams, completing lab assignments, and participating in lab section activities.
Your grade in the course will reflect performance on the midterm and final, four quizzes, 5 lab write-ups, and one policy white paper.

Quiz 1 (online; end of week 3) 5%
Quiz 2 (online; end of week 4) 5%
Midterm Exam (in class; 11/2) 20%
Quiz 3 (online; end of week 8) 5%
Quiz 4 (online; end of week 9) 5%
Final Exam (in class; 12/5) 20%
Lab Exercises (4 short lab write-ups @ 5% each) 20%
Public Health Policy White Paper and Presentation (*Group Project) 20%

The quizzes, midterm, and final exam will cover lectures, readings, videos, and lab section material. Use the lecture notes as your primary tool for studying.

Exams and assignments must be taken/turned in at the scheduled time—under no circumstances will make-up exams or assignment extensions be given without a documented excuse (e.g., note from your doctor). If you will not be able to take an exam or turn in an assignment, you must notify me or your GTF in advance (preferably by e-mail).

Quizzes: The quizzes will be multiple choice and will be timed. Each quiz will have 15 MC questions, taken on Canvas.

Midterm and Final Exam: The midterm and final exams will include MC, matching, and short answer (2-3 sentences) sections. The final exam will be cumulative, but will emphasize material from the second half of the course.

Lab Exercises: Sections will consist of lab exercises and discussion and are designed with two purposes: 1) introduce new material—both through lab activities and discussion—that complements what we cover in lecture; and 2) review key concepts from the lecture and readings—and this is a time to ask questions. Attendance is expected but not counted towards your grade. Over the term, you will turn in 4 short lab write-ups—these should require minimal write-up time outside of your lab section.

Public Health Policy White Paper: During the term, each student will participate in a group activity of 3 students and will write a 2-3 page (single-spaced) public health policy white paper on one of the following topics: 1) Alzheimer’s Disease; 2) Zika/Emerging Infectious Diseases; 3) Drug-Resistant Infections; 4) Alcoholism; 5) Type 2 Diabetes; 6) Autism; 7) Anxiety Disorders; or, 8) Lyme Disease. The group will also give a 5-minute presentation in their lab section that summarizes their white paper.

The goal of this assignment is to focus attention on an important contemporary public health issue, providing a statement of the problem (e.g., prevalence, developmental profile, populations impacted, etc.) and consideration of the utility of an evolutionary perspective. The white paper then provides a public health recommendation, with a justification for the intervention and a consideration of the pros and cons of the recommendation.

Grades will be assigned as follows: A = 90-100%, B = 80-89%, C = 70-69%, D = 60-69%, F < 60% (with minus and plus grades assigned at appropriate cutoffs).

The grading system used in this course is as follows:

A – Outstanding performance relative to that required to meet course requirements; demonstrates a mastery of course content at the highest level.
B – Performance that is significantly above that required to meet course requirements; demonstrates a mastery of course content at a high level.
C – Performance that meets the course requirements in every respect; demonstrates an adequate understanding of course content.
D – Performance that is at the minimal level necessary to pass the course but does not fully meet the course requirements; demonstrates a marginal understanding of course content.
F – Performance in the course, for whatever reason, is unacceptable and does not meet the course requirements; demonstrates an inadequate understanding of the course content.
<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics</th>
<th>Required Reading</th>
</tr>
</thead>
</table>
| 1 | 9/26 | **Course Overview and Requirements** | 1) Shubin 2009
2) Nesse 2016
3) Zimmer 2015 |
| | | **Anthropology, Science, & Evolution:** General Education | 1) Jurmain et al. 2011 (Ch2)
2) Zakaria 2015 |
| | 9/28 | & Liberal Arts and Science Education; Anthropology; Scientific Method; Early Evolutionary Studies | |
| | | **Week 1 Lab:** Intro; Scientific Method; Basic & Applied Science | **Lab readings**
1) Firestein 2012
2) Bering 2012 |
| | | **(Lab write-up due in lab the following week)** | |
| 2 | 10/3 | **Evolutionary Biology, Part 1:** Natural Selection & Adaptation; How Evolution Works; Biological Basis of Life | 1) Jurmain et al. 2011 (Ch3) |
| | 10/5 | Catch-up (if necessary), Video Segment (Evolution—Darwin’s Dangerous Idea), and Discussion | No new readings—Catch-up |
| | | **Week 2 Lab:** Evolutionary Theory | **Lab reading**
1) Johnson 2011 |
| | | **(Lab write-up due in lab the following week)** | |
| 3 | 10/10 | **Evolutionary Biology, Part 2:** Modern Synthesis; Adaptation; Evolution and Development | 1) Stanford et al. 2008 (Ch5)
2) Gluckman & Hanson 2006 (Ch2) |
| | 10/12 | **Evolutionary Biology, Part 3:** Human Evolutionary History | 1) Gluckman et al. 2016 (Ch6) |
| | | **Week 3 Lab:** Video: Ghost in Your Genes (Video questions do NOT get turned in—use as study guide) | **Quiz on the Scientific Method & Evolutionary Biology (Online—to be taken anytime 10/15 - 10/17; Covers everything from Weeks 1-3)** |
| 4 | 10/17 | **Evolutionary Biology, Part 4:** Modern Human Origins; Human Adaptation and Adaptability | 1) Jurmain et al. 2011 (Ch12) |
| | 10/19 | **Basics of Evolutionary Medicine:** Proximate vs. Ultimate Explanations; The Biocultural Perspective | 1) Zuk 2007 (Ch1)
2) Wiley & Allen 2013 |
<p>| | | Week 4 Lab: Anthropometry (Body size, proportions, and composition) & biomarkers/disease markers | Quiz on Evolutionary Biology & Human Evolution (Online—to be taken anytime 10/22 - 10/24; Covers everything from Weeks 1-4) |
| | | (Lab write-up due in lab the following week) | |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics</th>
<th>Required Reading</th>
</tr>
</thead>
</table>
| 5 | 10/24 | **Evolutionary Medicine Case Study: The Shuar Health and Life History Project**—Dr. Melissa Liebert (UO) and her research in Ecuador | 1) SHLHP website
2) Madimenos 2013 |
| | 10/26 | **Evolutionary Medicine Case Study: Molecular Anthropology and HIV/SIV**—Dr. Kirstin Sterner (UO) | TBA |
| | | **Week 5 Lab:** Public health policy & evolutionary approaches (Birth complications, low back pain, and HIV/AIDS, and cookie dough?!)** | 1) Anderson 2016
2) Castillo & Lieberman 2015
3) Ball & Russell 2014
4) Frieden 2013 |
| 6 | 10/31 | **Catch-up (if necessary), Review, and Discussion** | No new readings |
| | 11/2 | **Midterm Exam** (In Class—Covers everything from Weeks 1-6)** | No new readings |
| | | **Week 6 Lab:** Video: Rx for Survival: A Global Health Challenge—Disease Warriors (Video questions do NOT get turned in—use as study guide)** | |
| 7 | 11/7 | **Global Health, Part 1: The Biocultural Approach & Epidemiology** | 1) Relethford 2010 (Ch17) |
| | 11/9 | **Global Health, Part 2: The Big Picture of Global Health** | 1) Schneider 2017
2) Schneider 2017 (Ch1 + bits of Ch4 & Ch5) |
| | | **Week 7 Lab:** Food Production; Skeletal Health/Paleopathology **(Lab write-up due in lab the following week)** | |
| 8 | 11/14 | **Allergy & Autoimmune Disease, Part 1:** Changing Worlds & the Price of Victory over Infectious/Parasitic Disease | 1) Zuk 2007 (Ch2)
2) Stearns & Medzhitov 2016 (Ch8—pp. 233-237) |
| | 11/16 | **Allergy & Autoimmune Disease, Part 2:** Dysregulated Immune Systems and Microbiomes; Big Bad Gluten?
Week 8 Lab: Discussion: Current Issues in Public Health (Public Health vs. Individual Rights: Vaccination & Quarantine) | 1) Velasquez-Manoff 2015
Lab Readings:
Couzin-Frankel 2009
Specter 2011
Wilson 2007
Kaiser 2013
Healy & Paulson 2015 (Read at least 2) |
<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics</th>
<th>Required Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>11/21</td>
<td>Evolution of the Human Diet, Part 1: The Human Diet in</td>
<td>1) Wiley 2015 (Ch28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evolutionary Perspective; The Nutrition Transition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/23</td>
<td>Evolution of the Human Diet, Part 2: Obesity and Cardiovascular</td>
<td>1) Bellisari 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease: Obesity; The Obesogenic Environment; Diet & Physical Activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Week 9 Lab—No Lab: Thanksgiving Holiday!</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quiz on material since the midterm (Online—to be taken anytime 11/26 – 11/28; Covers everything but emphasizes Weeks 7-9)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11/28</td>
<td>Evolution of the Human Diet, Part 3: Obesity and Cardiovascular</td>
<td>1) Stearns & Medzhitov 2016 (Ch8—pp. 219-232)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease: Mismatch; Should We Be Eating a Paleodiet and What Does That Even Mean?</td>
<td>2) Jabr 2013</td>
</tr>
<tr>
<td></td>
<td>11/30</td>
<td>How to Live a Long and Healthy Life & How Evolutionary Medicine Can Help</td>
<td>1) Lieberman 2013 (Ch13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Catch-up (if necessary), Review, and Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Week 10 Lab: Group Presentations on Policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Exam, Monday, December 5, 2:45-4:45 (In Class [in the regular classroom!)—Cumulative but emphasizes material from weeks 7-10)</td>
<td></td>
</tr>
</tbody>
</table>
Week 1 Readings

Lab readings for week 1
- Bering J. 2012. How are they hanging? This is why they are. In: *Why is the Penis Shaped Like That?...And other Reflections on Being Human*. *Scientific American/FSG*, pp. 3-10.

Week 2 Readings

Lab reading for week 2

Week 3 Readings

Week 4 Readings

Week 5 Readings
- Shuar Health and Life History Project (http://www.bonesandbehavior.org/shuar/); Read Home, Shuar, and Field Site pages.
- Dr. Sterner reading TBA
Lab readings for week 5

- Anderson LV. 2016. The FDA's abstinence-only approach to eating cookie dough is unrealistic and alarmist. *Slate* (7/1/16)

Week 6 Readings

No new readings

Week 7 Readings

- Schneider MJ. 2017. Public health: Science, politics, and prevention (Chapter 1). In: *Introduction to Public Health (5th edition)*. Burlington, MA: Jones and Bartlett Learning. pp. 3-14. (Also read short sections from Chapters 4 & 5 included with this chapter PDF)

Week 8 Readings

Lab readings for week 8 (Read at least two):

Week 9 Readings

Week 10 Readings